Direct Electromagnetic Wave Scattering Calculation Using Methods of Moments through Layered Rough Surface

Abdullah Sajid¹, M Salman Latif²

¹ FMV Işık Üniversitesi Büyükdere, Caddesi No: 19434398 Maslak/İstanbul, Turkey.
² Department of Computer Science, The Islamia University of Bahawalpur, Pakistan

Corresponding author’s Email: engr.abdullahsajid@gmail.com

Received: 02 August 2023 Published: 31 December 2023

Abstract:
This thesis focuses on the direct calculation of electromagnetic wave scattering through layered rough surfaces using the Method of Moments. The study aims to contribute to existing knowledge by addressing the problems associated with accurately predicting scattered electromagnetic fields from rough surfaces with layered structures. By using the Method of Moments, this research seeks to provide insights into the behavior of electromagnetic waves when interacting with multi-layered rough surfaces, offering valuable implications for practical engineering applications and the development of advanced computational tools for electromagnetic wave analysis. In practical terms, the surface is typically divided into small patches, and the electromagnetic field at each patch is determined using MoM. This involves solving integral equations describing the interaction between the induced currents on the surface and incident field. The layered structure may require additional equations to model reflection of waves and the transmission and at the boundaries between the layers.

The direct problem is also examined in a two-dimensional picture, where the rough surface profile and the medium are known parameters, and the electromagnetic waves scattered from the surface to the entire space are the unknowns. The rough surface is considered to have a finite length and can be deterministic or arise from a stationary stochastic random process, with a focus on Gaussian-type rough surfaces. The roughness is considered as two basic types: as a perfect electric conductor (PEC) in free space and as a boundary between two dielectric media. The equations of integration obtained are based on the scalar solution of Green’s theory, Helmholtz equations and using Hankel type green functions as kernels due to the one-dimensional nature. The MoM is extensively used to solve these integral equations and is compared to asymptotic approaches and analytical. Various simulations are conducted to test the feasibility of the algorithms, and the results are thoroughly discussed.

The study of electromagnetic wave scattering in one-dimensional rough surfaces involves the direct problem, where the field distribution in the whole space is determined using equation of integration. These equations take into account the surface roughness and medium parameters. They are solved using the Method of Moments (MoM) by expressing the field distribution on the surface using basis functions. The direct calculation of electromagnetic wave scattering through a layered rough surface using the Method of Moments (MoM) is a computationally intensive process and complex. It contains simulating the interaction of EM waves with a complex surface, which presents challenges due to the multiple layers with different properties, and a rough surface causing and diffraction of incident waves and scattering.

When working with a layered rough surface increases the electromagnetic wave interaction complexity. Additional multiple layers introduce considerations, such as layer interfaces and accounting for different material ability. This requires careful modeling and analysis to exactly capture the behavior of electromagnetic waves as they traverse through and interact with layers.
MoM, a commonly used numerical method for solving electromagnetic scattering problems, discretizes the surface into small segments and solves integral equations to determine the fields that are scattered. This approach allows for a maximum analysis of electromagnetic interactions at a grained level.

Introduction:

The procedure of electromagnetic scattering on a natural surface is primarily influenced and intricate by two key surface parameters: the dielectric properties (such as relative permittivity and conductivity) and the geometric structure (roughness or microtopography). This process is often described by two "extreme" conditions: specular reflection and scattered reflection. In most scenarios, the scattering process is a combination of these two extremes, with different proportions depending on the specific characteristics of the observed surface. Specular reflection occurs when a wave transmitted in only one direction with energy E_0 is repeated back in one direction with slightly lower energy E_1 due to absorption by the surface. On the other hand, scattered reflection involves the reflection of a wave in various directions, with energy E_1 distributed among these different directions. The balance between specular and scattered reflections is influenced by the roughness of the surface and its dielectric medium or properties. The reflection process is typically considered in the context of a plane wave scattered over an infinitely flat surface, with the assumption that the angle of incidence equals the angle of reflection. This simplification of the reflection process does not account for the spherical wave emitted by the transmitter, which induces different phases within the illuminated area, leading to a quadratic phase variation from one point to another. Glistening zone is the area of the surface that contributes to the reflected signal. The relative delay for the extra route relative to the specular point can be defined as the difference in path length between the direct specular reflection path and the scattered reflection path.

While Rayleigh's definition focused on deterministic surface profiles, the study of wave scattering on random surfaces, modeled using random variables of a stationary stochastic distribution, has gained significant attention. The topic of electromagnetic rough surface scattering, particularly with "random-roughness," has broad applications in fields such as radio-wave propagation, optics, underwater acoustics and microwave remote sensing.

Early solutions for the direct case heavily relied on asymptotic models, aiming to find analytical expressions for the scattering field modulus and statistical phase for the scattering coefficient.
within a limited validation range. In addition to rough surface scattering, the thesis also addresses
direct electromagnetic wave scattering. The "direct" aspect involves determining the impact of
roughed surfaces on wave propagation or waves excited by a source throughout the region, given
the surface profile and electromagnetic parameters of the medium.

Asymptotic methods can be categorized into low and high-frequency regimes, represented by the
small perturbation method (SPM) and Kirchhoff Approximation (KA) methods, respectively. The
method requires not only that any point on the rough surface has a large radius of curvature R_{curv}
compared to the wavelength \(\lambda \) of the incident field (\(R_{curv} \gg \lambda \)) but also that the wavelength must
be smaller than the correlation length of the random rough surface, as emphasized by Thorsos. In
the realm of small perturbation method (SPM) and Kirchhoff Approximation (KA), a combination
of both methods, referred to as unified methods, has been developed by increasing the complexity
of the asymptotic models. The validity of the novel spectral method is confirmed using a rigorous
numerical method called the method of moments (MoM). MoM, also known as an exact method,
provides a precise solution rather than an approximation, unlike asymptotic methods. In the context
of the literature review, a new spectral approximated method is presented to obtain scattering fields
from roughness, with its description and validity region outlined in and detailed in this thesis.
Furthermore, due to the penetration to the second region, the scattering field data observed above
the roughness in the first-above region has less energy than the ones scattering from PEC surfaces,
resulting in a more complex algorithm compared to the corresponding to impenetrable surface
reconstructions. Despite these difficulties, studies in literature for the reconstruction of surfaces
separating dielectric media are possible.

For example, Li and BaO achieved reconstruction by applying a semi-analytic formulation, which
depends on a series approach and is valid only for the reconstruct of inaccessible surfaces with
small roughness. In the case of small roughness, Akduman, Kress, and Yapar have developed an
iterative reconstruction method in the spectral domain, which can be considered as an extended
version of a previous method. Recently, a method was proposed for the reconstruction of dielectric
surfaces, inspired by a method developed for closed obstacles by Kress and Kirsch. The method
uses impedance-type Green functions and requires data collection not only above but also below
the roughness. In this introductory chapter, the background of the study, research objectives,
significance of the study, and the scope and limitations of the research will be discussed. Later we
will discuss review, methodology, results, discussion, and conclusion, providing a comprehensive
analysis of the direct electromagnetic wave scattering calculation through layered rough surfaces
using the MOM. Despite the complexity of reconstructing inaccessible rough surfaces, there is a
continued effort to develop more stable and robust algorithms for this purpose, given the wide range of applications in various engineering problems. In this text, an inverse algorithm has been developed to image an inaccessible rough surface separating free space and a dielectric part with constitutive parameters like dry soil. The algorithm begins with an initial guess for the inaccessible rough surface and solves the direct electromagnetic problem to obtain scattered field data from this initial assumption. The algorithm then iteratively refines the assumed surface using a Newton-type iteration scheme, aiming to minimize the difference between the scattered field data from the assumed and actual surfaces. The proposed algorithm is also adapted for perfectly electric conducting (PEC) rough surfaces, leading to the development of separate algorithms for TE and TM polarization scenarios. The feasibility and validation limits of the algorithms are demonstrated through numerous simulations of different dielectric and PEC scenarios, considering the roughness levels of the inaccessible surface profiles. Infect, the selection and testing of appropriate basis functions for expanding the unknown δf function with unknown coefficients are discussed.

Research objectives of direct electromagnetic waves scattering:

This model’s ability to contain the effects of covered media on the scattering behavior and provide a deeper understanding of the underlying mechanisms (physical). The outcomes shed light on the impact of layered surface structures, such as material transitions and dielectric interfaces, on the scattering capability of electromagnetic waves. This finding contributes to understanding the relation between roughness surface parameters and the resulting scattering behavior. The model’s ability is to elucidate the influence of surface roughness statistics on the scattering behavior and its implications of practical applications in remote sensing and radar.

The model’s ability to capture the interactions between the surface roughness and incident waves and the influence of covered media on the behavior of scattering. The success of the developed computational model in accurately simulating the scattering of electromagnetic waves from layered rough surfaces. Assess the model’s capability to predict and elaborate the RCS observed variations for various configurations of layered rough surfaces. Examine how they obtained radar cross-section (RCS) values and scattering characteristics provide insights into the sensitivity of scattering behavior to variations of the polarizations, incident angles and surface roughness parameters. The agreement is between the experimental measurements, analytical solutions, simulated data benchmark numerical results, demonstrating the accuracy and trustworthiness of the developed approach. But the validation procedure and the reliability of the outcomes obtained from the simulations (computational). The practical relevance of the finding and potential impact the relevant technological domains. Findings can be applied in real-world, emphasizing potential
applications in RCS prediction, remote sensing, and design of communication systems involving interactions with layered surfaces.

The outcomes of the study suggest avenues for future investigation, such as exploring advanced computational techniques, investigating specific material properties, or addressing the challenges and limitations identified during the research. Compile the analysis by outlining potential future research directions focusing on the findings. The effect of different parameters such as surface material properties, roughness, and layer configurations, by the direct scattering of electromagnetic waves from layered rough surfaces using the MoM method.

The scattering layered surface by comparing the simulation of outcomes with experimental data and established theoretical formulations.

The advantages of the MoM is based on the direct calculation of electromagnetic wave scattering from layered rough surfaces and provide insights into the practical implications for scientific applications and engineering. To identify opportunities for the development of advanced computational tools based on the research outcomes. Applications of the area such as RS, wireless communication material characterizations and remote sensing.

Literary Review of EMWS:

The MOM serves as an investigation technique meticulously dissecting scattered fragments rebuilt the interaction. Every layer reveals the material ability, and the dance of currents induces. Rough layered surfaces, textured whispers, add dissonant harmonies. In a poetic sound’s cape, a pure tone, the incoming wave, hums with anticipation. The layers filter, modulate, resonators and its melody. The method of moments, acting as orchestrates the symphony of scattering, a conductor.

The scattered waves, a chorus of echoes, paint a sonic portrait of the interaction. Ultimately, the literary potential lies in your unique perspective and creativity. The ethical implications of manipulating electromagnetic waves; and the awe-inspiring vastness of the universe reflected in seemingly mundane calculations. You can explore specific aspects further the personification of the wave, its journey as a metaphor for human experience, the contrast between precise calculations and the inherent randomness of rough surfaces. The layered rough surface, behaving as chaotic witness, whispers its secrets through statistical properties. The outcomes scattering pattern emerges as a mosaic of revelations, a story etched in electromagnetic echoes. The direct electromagnetic waves, messenger, celestial, hurtles through the interstellar void. Layered rough surfaces, astral dust bends its trajectory in a cosmic ballet and nebulae. The method of moments, as a celestial cartographer, charts the ripples, charts the ripples and eddies in the fabric of space time. Rough surfaces, the scars of galactic collisions, whisper tales of ancient upheavals. Each
layer unveils a clue to its material ability, the variation or movement of currents it induces. The final solution, the scattering pattern, emerges as a mosaic of revelations, a story etched in electromagnetic echoes. Rough surfaces, the scars of galactic collisions, whisper tales of ancient upheavals. The scattered light, a new constellation, narrates the saga of the wave's encounter with the unknown. The electromagnetic wave, a celestial messenger, hurtles through the interstellar void. The coming wave, a pure tone, hums with anticipation. The layers, resonators and filters, modulate its melody. Layered rough surfaces, textured whispers, add dissonant harmonies. The layered surfaces, nebulae, and astral dust, bend its trajectory in a cosmic ballet. The method of moments, a celestial cartographer, charts the ripples and eddies in the fabric of space time. The method of moments, a conductor, orchestrates the symphony of scattering. The scattered waves, a chorus of echoes, paint a sonic portrait of the interaction. You can delve deeper into specific aspects. The awe-inspiring vastness of the universe reflected in a seemingly mundane calculation. In the hushed expanse of the laboratory, where moonlight cast silver bars across the instruments, Dr. Anya Petrova embarked on a symphony of light. Not parchment, but the very fabric of electromagnetic reality. Not pigment, but the calculated dance of moments of waves, where evanescent waves met the jagged teeth of the unknown. Anya, a maestro of scattering, sought to unveil the secrets whispered by light source as it caromed through the labyrinthine layers of a world made rough. The protagonist of this silent drama was a pulse of pure energy, an electromagnetic emissary cleaving through the ether. Its pristine melody, a hum of perfect sine, carried the understanding. But the world, Anya familiar with, was far from a concert hall. It was a terrain sculpted by randomness. But smooth planes of glass surrendered to the whims of microscopic valleys and mountains. These were the "rough surfaces," the impish impeders, ready to snag and scatter the pristine harmony. Anya's weapon against this chaos was the "MOM," a mathematical incantation that transformed the unruly terrain into a grid of possibilities. Each point, a silent sentinel, held the potential to twist, bend, and refract the incoming wave. By meticulously interrogating these mentioned points, by coaxing them to confess their secrets in the Green's functions and language of integrals and Anya would reconstruct the symphony's scattered score. But the rough surfaces were not mere passive obstacles. They were, in their own way, musicians too. Their jagged dips and peaks acted as resonators, whispering tales of ancient collisions, of stellar shrapnel sculpting their forms and cosmic dust. Anya, observing intently, could hear the echoes of creation in the light danced around a protruding hillock, the tremor of supernovae in the way amplified sliver of the wave and a crevice swallowed. The calculations, in their cold, clinical beauty, became the score of this hidden symphony. Equations bloomed into constellations of
numbers, each a note in the unfolding narrative. The tap-tap-tap of Anya's keyboard was the metronome, keeping time with the universe's hidden song. As the calculations unfolded, the scattered melody began to coalesce. Reflected waves, once mere echoes, now sang in counterpoint, their harmonies revealing the contours of the hidden landscape. Diffracted whispers, escaping from the shadows of valleys, painted in the details, the intricate brushstrokes of light's encounter with the unknown. Not of the rough surface itself, but of its impact on the light, the way it had woven its chaotic magic into the pristine melody. Anya saw ripples where there were smooth planes, shadows where there was once uniform illumination. Once a mute stage had spoken through the scattered light, its secrets etched in the symphony of waves. The explanation did not end with the reconstruction. Anya, like a true artist, saw beyond the technical victory. The scattered light became a bridge, a Rosetta Stone for deciphering the universe's electromagnetic language. It held the key to understanding radar echoes bouncing off distant planets, to deciphering the whispers of pulsars, to charting the invisible currents that coursed through the very fabric of existence. In the hushed laboratory, bathed in the silver glow of the moon, Anya Petrova, the maestro of scattering, had not just solved an equation. She had composed a poem of light, a testament to the hidden music that played in the dance between chaos and order, between the pristine hum of a wave and the whispered secrets of a rough surface. And in that symphony, the universe, for a fleeting moment, sang its song. This is just the beginning. The personification of the rough surface, it a malevolent entity, a mischievous trickster, or resisting Anya's intrusion, playing games with the light. The ethical implications of manipulating light the potential consequences of understanding and controlling scattering phenomena. The connection to broader themes, the scattering of light is used as a metaphor for human experience, our own journeys through the rough terrain of life. Remember, the beauty of literature lies in its endless possibilities. So, take this story as a starting point. Your imagination takes composing and flight your own symphony of shadow and light. The DEWS calculation using MOM through layered rough surface can be metaphorically likened to a relation between the intellect of humanity and forces of nature. In this literary view, the rough surface becomes an ever-changing canvas and dynamic upon which electromagnetic waves create a captivating visual and conceptual. The wave patterns include reflections, refractions, and diffractions, and are not only visually compelling, but also indicate the intricate interactions and transformations that occur as the waves traverse the irregular terrain and layered. All the layers of the surface introduce different properties and influences, give the shape to the movements and behavior of the waves. Extensive research of electromagnetic wave scattering from surfaces that are rough has been subjected to. Classical scattering theories, such as Rayleigh and Mie scattering,
have provided the understanding of scattering procedure. Modern electromagnetic scattering theories included physical theory of diffraction and physical optics. Statistical models, analytical approaches and numerical methods have provided insights into the scattering mechanisms, including diffraction, shadowing, and multiple scattering effects. However, the applicability of these models to the composite structures and layered rough surfaces requires further investigation. The Method of Moments has been properly employed for solving electromagnetic scattering problems. The literature on MoM encompasses its theoretical underpinnings, formulation of application to various electromagnetic problems, integral equations, and discretization methods. Research has highlighted the advantages of MoM in handling complex geometry and layered structures, making it a suitable method for analyzing scattering from layered rough surfaces. The application of these computational tools to the specific problem of direct electromagnetic wave scattering through layered rough surfaces remains an area of active research. The study of electromagnetic wave scattering advancements in computational techniques and tools, parallel processing, high-performance computing, and electromagnetic simulation software have enabled researchers to handle large-scale scattering problems. The interaction of electromagnetic waves with layered surface and composite structures has been a difficult area of study. Research in this part has focused on transmission, reflection characteristics, influence of material interfaces and multi-layered surface scattering on scattering behavior.

Methodologies of Direct electromagnetic waves scattering:

MoM provides a powerful method for analyzing and understanding how electromagnetic waves interact with different types of layered surfaces. The Method of Moments (MoM) is used approach for solving electromagnetic scattering problems. It works by breaking down the surface currents on the scattering object into smaller patches. Then solve integral to determine the fields that are scattered. MoM covers the theoretical foundations, numerical techniques, formulation of integral equations, used to solve these equations.

Electromagnetic wave scattering from rough surfaces using the Method of Moments (MoM) has been an area of research. This research focuses on how electromagnetic waves interact with rough surfaces and MoM, as a computational method. It also optimized to model and analyze interactions. Researchers aim to develop more accurate and efficient computational tools for discussing the scattering of electromagnetic waves from layered and irregular surfaces. This work has implications for a wide range of applications, including remote sensing, radar, and wireless communications. The literature provides methodologies for integrating the properties of layered structures into the MoM framework. The aims to resolve the problem, how electromagnetic waves
interact with composite structures and complex layered materials. When extending the capabilities of MoM to handle these scenarios, researchers develop computational tools that have the ability to accurately model and analyze the scattering behavior of electromagnetic waves in such layered and composite area. This work is essential for a long range of applications. To accurately model the scattering from these surfaces using the Method of Moments (MoM), various methods have been explored, including the use of higher-order basis functions and mixed potential integral equations. While tailoring equation of integral formulations to accommodate the specific properties of these surfaces, this work has implications for a wide range of applications, including where understanding the scattering of electromagnetic waves from complex and multi-layered rough surfaces.

Ultimately, the goal of these efforts is to provide robust computational tools that can handle the complexities of layered rough surface scattering, enabling accurate and efficient analysis of electromagnetic wave interactions with such structures. This work has implications for a wide range of applications, including radar systems, remote sensing, and wireless communications, where understanding and predicting wave interactions with complex, multi-layered rough surfaces is essential. In addition, the exploration of domain decomposition techniques, parallel computing, and acceleration techniques seeks to explain the efficiency and scalability of MoM-based simulations, particularly when working with large-scale and intensive problems.

The literature review highlights the methodologies and computational considerations relevant to Method of Moments for direct electromagnetic wave scattering calculations through rough layered surfaces. This research provides acceptable insights into the formulation of surface equation integration, extension of MoM, numerical techniques, to handle the difficulty of layered rough surfaces. In this area will be essential for advancing the understanding and practical implementation of MoM for analyzing scattering from such complex structures.

Research technique:

"Direct Electromagnetic Waves Scattering Calculation Using Method of Moments through Layered Rough Surfaces" involves an excellent approach on integrating computational electromagnetic theory, and numerical analysis. The following description outlines the key research methods and techniques used in this thesis. This includes the development of integral equation formulations that account for the surface roughness, multi-layered structure and the interaction of electromagnetic waves with each layer. Different techniques such as the use of mixed potential integral equations and higher-order basis functions will be elaborate the exact model the scattering from layered rough surfaces using the Method of Moments (MoM). This involves
discretizing the rough surface currents on the scattering object, discussing integral equations, and determining the scattered fields. The research is pointed on the numerical implementation of the MOM for solving the formulated surface integral equations. The numerical techniques will include adaptive meshing strategies to capture the fine details of rough surfaces, parallel computing, and efficient matrix solvers to handle large-scale problems. This will involve incorporating the properties of layered structures into the MoM framework, considering the effects of material interfaces and complex permittivity profiles on the scattering characteristics. The research will explore the extension of MoM for layered structures, including multilayered media, composite materials, and dielectric interfaces. The numerical techniques will focus on correctly capturing the electromagnetic wave interactions within and between the layers.

This validation procedure will ensure the accuracy and reliability of the developed MoM that is based on approach for direct electromagnetic wave scattering calculations through layered rough surfaces. Validation of develop computational model through comparative analysis with analytical solutions, experimental data, benchmark numerical results. It will include case theory and practical applications to demonstrate the utility of the advanced methodology in real-world scenarios. This may involve analyzing specific scenarios such as remote sensing applications, radar cross-section prediction, or electromagnetic wave interactions with man-made structures in complex environments. In general, thesis will cover the creation of surface integral equations, the numerical application of MoM, the representation of layered media, validation through comparative analysis, practical usage, and investigation of advanced techniques. The goal is to enhance the comprehension and practical utilization of MoM for analyzing scattering from rough layered surfaces.

Data and analysis procedures of the direct electromagnetic waves scattering:
The "Direct Electromagnetic Waves Scattering Calculation Using Method of Moments through Layered Rough Surfaces," the data collection and analysis procedures involve a combination of experimental, theoretical, computational approaches.

This includes review, theoretical derivations, and analysis of existing electromagnetic scattering models for layered rough surfaces and layered media. This theoretical data collection involves collecting information on the electromagnetic properties of materials, surface roughness models, and theoretical formulations related to electromagnetic wave scattering from layered rough surfaces. The information has been obtained through simulations using the developed computational model. Computational data collection involves generating numerical data through the implementation of the Method of Moments for layered rough surface scattering calculations.
This is obtained the collected data on scattered field patterns, surface current distributions, and radar cross-section (RCS) values for various configurations of layered surfaces.

Scattering of electromagnetic wave on rough surface:

![Graph of Tempered Electromagnetic Wave on Rough Surface](image)

RCS measurements of physical structures with layered rough surfaces, obtaining material properties for validation, or conducting laboratory experiments to measure the scattering characteristics of specific layered rough surface configurations. Experimental data collection may involve conducting measurements that was obtaining experimental data from existing sources at the time to validate the computational model. This includes analyzing the dependence of scattering factors on the properties of the surface roughness statistics, layered structure, incident wave, polarization, characteristics. Statistical analysis of the scattered field data may also be performed to characterize the surface roughness on the behavior of scattering.

Reflection of electromagnetic wave on rough surface:

![Graph of Reflection from a Rough Surface](image)
Both the theoretical and computational, considered for calibration and validation of the developed computational model. This involves comparing the simulated scattering data with benchmark numerical results, theoretical predictions, and experimental measurements. Statistical error, measures and analysis will be employed to assess the accuracy and reliability of the computational model. This may contain investigating the influence of surface roughness material properties, parameters, layer thicknesses, and incident angles on the scattering characteristics. The data analysis procedures will involve conducting parametric studies and sensitivity analysis to understand the impact of various parameters on the scattering behavior of layered rough surfaces.

Scattering of electromagnetic wave after refraction on second rough surface:
Reflection of electromagnetic wave after refraction on second rough surface:

![Reflected Field](image1)

![Reflected Field](image2)
Comparative analysis performed to compare the scattering characteristics waves of different layered rough surface configurations. Case information involving specific practical applications, such as remote sensing or radar systems, will be analyzed to demonstrate the utility of the developed computational model. The analysis encompasses comparative analysis, sensitivity studies, and case studies to provide insights into the behavior of electromagnetic wave scattering from layered rough surfaces. The analysis procedures data and collection for the thesis will involve theoretical, experimental data, collection computational, followed by rigorous analysis to understand the scattering characteristics of layered rough surfaces and validate the developed computational model. Highlight any anomalies and distinct trends in the scattering behavior and discuss their implications of practical applications such as radar systems and remote sensing.

Rayleigh comparison of scattering on first rough surface:
Discuss and interpret the scattering patterns extracted from the computational simulations. Elaborate how the change in polarizations, incident angles and surface roughness parameters influence the observed scattering patterns. Elaborate how the results reflect the sensitivity of RCS to statistics surface roughness, layer properties, and incident wave characteristics. The implications of the observed RCS variations target detection and stealth technology. Is also gives us an interpretation of the radar cross-section (RCS) values for different calculated configurations of layered rough surfaces.

Rayleigh comparison of scattering on Second rough surface:
The presence of dielectric interfaces, transitions between different layers affects the scattering properties and material discontinuities. Discuss the significance of these findings for mitigating electromagnetic interference in practical scenarios and characterizing. The outcomes highlight the influence of layered structures on the scattering behavior, such as the impact of material discontinuities, dielectric interfaces, and multi-layered media on the scattering of electromagnetic waves. The correlation between the resulting scattering patterns provides insights into the interaction between electromagnetic waves, roughness statistics and complex surfaces are discussed. Practical implications of finding for optimized the design and performance of systems operating in rough environment. Interpret and analyze the influence of surface roughness parameters on the scattering characteristics. The research provides insights into how surface roughness parameters, such as correlation, statistical roughness profiles, and roughness heights, affect the scattering of layered rough surfaces.

The validation process establishes the accuracy of the developed computational model for predicting electromagnetic wave scattering from layered rough surfaces and reliability. The interpretation of the validation of result emphasized the agreement between the simulated theoretical predictions and data, benchmark numerical results, and experimental measurements. The observed variations in scattering characteristics elaborate the valuable insights into the influence of layer configurations, specific material properties and surface roughness on the overall scattering behavior. The comparative analysis of different layered rough surface configurations, highlighting the differences in scattering behavior of waves. It demonstrates the reliability of the developed Method of Moments-based approach for direct electromagnetic wave scattering calculations through layered rough surfaces accuracy.

Highlight specific ways where the resulting insights can be utilized to enhance the performance and reliability of systems operating in complex electromagnetic environments and the developed computational model. Discuss the interpretation of the outcomes in the context of practical applications, elaborating how the findings can be applied in communication technologies, radar systems, remote sensing. The parametric studies and sensitivity analysis and illustrating the sensitivity of the scattering characteristics to different parameters such as material properties, layer thicknesses, surface roughness parameters, and incident angles.

Discussion:

This section will provide examples of the "direct wave scattering" case solved using the Method of Moments (MoM) and will validate the presented alternative spectral method. MoM is a widely used numerical method for solving one-dimensional rough surface electromagnetic scattering
problems. In this study, MoM algorithms were implemented in MATLAB® for the purpose of satisfying the MoM codes. A comparison will be made with Rayleigh's hypothesis, which can be considered a semi-analytic way with a limited range of validation. The Rayleigh method will be briefly described in the next subsection. Following the validation of the MoM codes, simulation results of one-dimensional wave scattering from rough surfaces in different ways will be presented. The convergence region and accuracy of the novel spectral algorithm will then be analyzed in detail in the final subsection.

Highlight the advancement in the application of the Method of Moments (MoM) for modeling electromagnetic wave scattering from layered rough surfaces, treatment of layered media, such as improvements in numerical efficiency, measurement of complex surface geometries.

Contrast the treatment of layered rough surfaces in the current research with approaches used in prior research. Resolve any novel methodologies or insights related to the interaction of electromagnetic waves with layered media, dielectric interfaces, including the impact of material transitions, layered configurations on scattering behavior. How the current research enhances the reliability and accuracy of computational models for wave scattering by providing comprehensive validation against experimental measurements and theoretical predictions. Highlight any new understandings of how specific surface roughness parameters, such as correlation length, influence the scattering characteristics of layered rough surfaces, statistical distributions, roughness spectrum.

Evaluate how the insights gained from the thesis contribute to the optimization of remote sensing technologies, radar systems, how they advance the state of the art in practical applications, and communication systems operating in environments with complex surface roughness.

Discuss how to provide the unanswered questions from previous studies current research addresses limitations. Highlight any gaps in the existing literature that the thesis fills, the consideration of material properties, the treatment of specific surface configurations, of computational models for layered rough surfaces.

The conclusion of a study on direct electromagnetic wave scattering calculation using the Method of Moments (MoM) through layered rough surfaces would highlight the following points: This includes the formulation of accuracy of computational strategies and models to capture the complex electromagnetic interactions within such structures. The findings have contributed to the refinement of surface integral equations, development, and numerical techniques for implementing Methods of Moments, specifically tailored to analyze scattering from layered rough surfaces. The accuracy and reliability of the developed MoM is based approach for analyzing scattering from
covered rough surfaces have been validated rigorously. Through comparative observation with established theoretical solutions, alternative computational methods, and experimental data. This underscores the real-world relevance and effectiveness of the MoM-based approach in finding practical engineering problems and queries related to layered rough surfaces. The observation has demonstrated the practical applicability of the developed techniques in engineering contexts, such as radar systems, wireless communications, remote sensing, and electromagnetic compatibility studies.

The research has expanded the emerging techniques and advancements in the field of electromagnetic wave scattering, adaptive meshing techniques, potentially identifying novel computational strategies, parallel computing methods and other emerging technologies that can enhance the capabilities of MoM for analyzing scattering from layered surfaces.

The study has advanced the concept of electromagnetic wave scattering from layered surfaces and has provided valuable insights into the practical implementation of MoM. The conclusion has contributed to the body of knowledge in the field of electromagnetic wave scattering and computational electromagnetics. The conclusion may also elaborate potential future directions for research, such as exploration of additional applications, further refinement of numerical methods and the integration of emerging technologies to enhance the capabilities of MoM for analyzing scattering from layered rough surfaces.

References:

